The Solar Energy Conversion Group has developed and maintains unique, advanced electron paramagnetic resonance (EPR) facilities at Argonne for the analysis of the structure and function of artificial and natural photosynthetic assemblies, catalytically active transition metal complexes, biohybrid complexes, organic photovoltaic materials, and metallo-organic frameworks. Electron paramagnetic resonance (EPR) spectroscopy is only sensitive to systems containing unpaired electron spins. This makes EPR an indispensable technique for research into the chemical, biochemical and catalytical reactions where these radicals play a vital role. Another related field of application is in photochemistry, where chemical reactions are initiated by light. After light absorption, the first step of transformation involves a charge separation process, which create both a negatively charged electron and a positively charged hole. Both of these posses unpaired spins and can be detected, characterized and followed by EPR. Furthermore, open-shell transition metals which are at the center of many catalytic reactions can also be studied in detail by EPR spectroscopy.
Content Loading...
ABOUT
Search
Featured Content
You can use keywords such as "Advanced Materials" to find experts who focus on this area of interest.
You may search for a specific lab to see all facilities, technologies and experts found there. e.g. "Ames National Laboratory"
You can use search for a specific technology to find all laboratories and experts who have expertise in this field. e.g. "Energy Analysis"
Fill out the information below to ask your energy technology question. Our target response time is 14 business days; however, any individual may not be available to meet this target though we strive to provide a timely response.