LPS enables rapid discovery of expertise and serves as a conduit between researchers, subject matter experts, investors and innovators by providing multi-faceted search capability across numerous technology areas and across the National Laboratories. Learn more about LPS.

This portal is meant to enable connection to U.S. Department of Energy (DOE) patents and experts, not to provide information about coronavirus or COVID-19. DO NOT contact the individuals and researchers included in LPS for general questions about COVID-19. For information about the virus, please visit the Centers for Disease Control (CDC) website.

Fast Superconducting Switch for Superconducting Power Devices

Stage: Prototype

Superconducting magnetic energy storage (SMES) offers an attractive alternative to chemical and electromechanical energy storage. This grid-enabling switch can maintain a large ratio of the stored energy to the static energy loss in the SMES and has the ability to by-pass the current through a fast, high-voltage superconducting switch. Strategic bursts of power can play a crucial role in maintaining grid reliability, especially with today's congested power lines and the high penetration of renewable energy sources.



This invention relates to the design and application of a novel high-voltage superconducting switch provided with direct heating of the active superconducting layer through a metal substrate either by direct transport or by inductive current, and the protection of the superconducting layer by cryogenically-cooled metal "oxide" semiconductor field-effect transistors.

Applications and Industries

SMES devices can be used for storing large amounts of energy with very little loss over long periods of time. They can be used to help integrate renewable resources into the grid or to condition the power provided by the grid, and this switch enables their deployment.

Benefits

The high-voltage superconducting switch can tolerate large power fluctuations and be switched quickly between superconducting and normal (resistive) states.