LPS enables rapid discovery of expertise and serves as a conduit between researchers, subject matter experts, investors and innovators by providing multi-faceted search capability across numerous technology areas and across the National Laboratories. Learn more about LPS.

This portal is meant to enable connection to U.S. Department of Energy (DOE) patents and experts, not to provide information about coronavirus or COVID-19. DO NOT contact the individuals and researchers included in LPS for general questions about COVID-19. For information about the virus, please visit the Centers for Disease Control (CDC) website.

Palladium-Cobalt Particles As Oxygen-Reduction Electrocatalysts

Stage: Prototype

Platinum is the most efficient electrocatalyst for accelerating the oxygen reduction reaction in fuel cells. It is also expensive. Palladium-cobalt particles have been used to replace platinum to catalyze this reaction, leading to a much lower cost electrocatalyst.

Ternary alloys of palladium, cobalt, and a third transition metal are formed into nanoparticles, bound to a conducting medium, and applied as the anode in a fuel cell to reduce oxygen. Palladium-cobalt alloys may also incorporate two additional transition metals to make a four-component, or quaternary, alloy. These alloys are deployed on the anode of fuel cells as electrocatalysts for the oxygen reduction reaction. Nickel and iron are preferred transition metal components.

Applications and Industries

Fuel cell catalysts; oxygen-reduction; heterogeneous catalysis


The palladium-cobalt nanoparticles have the same catalytic activity as the highly expensive platinum nanoparticles making them a cheaper alternative to platinum.