Quantum-coherent devices offer the potential for unprecedented precision in sensing and the ability to directly simulate complex quantum phenomena that have no known efficient classical algorithms. Development and implementation of quantum technologies is expected to have a significant impact on our ability to address some of the most complex national security problems. Our teams study quantum science challenges from a broad range of
perspectives, drawing on deep talent pools in areas such as physics,
chemistry, optics, engineering, data science, and materials science.
LLNL is seeking industry partners to collaborate on quantum science and technology R&D in the following areas:
Quantum-coherent device physics: The building blocks of a quantum system are its highly specialized components, including superconducting qubits and resonators that enable better control of electrical flow. Our physicists and materials scientists collaborate to design, fabricate, and characterize qubits and resonators that offer the performance needed for quantum computing and sensing systems.
Quantum materials: Our materials science experts develop and optimize quantum materials with extremely low energy and exotic physical properties. These superconductive materials are needed to build quantum devices and systems, including scalable qubits that form the building blocks of quantum computing systems, as well as materials that will be needed by quantum sensors and quantum-enabled imaging devices.
Quantum–classical interfaces: Quantum computing systems require a high-fidelity classical interface to achieve qubit control and to conduct measurements of the quantum device. We leverage LLNL’s expertise with photonic systems, such as radar and laser systems, to develop and optimize a quantum–classical interface.
Computing and simulation: Our multidisciplinary research teams design, develop, and evaluate prototype quantum computing systems, bringing us closer t a fully programmable quantum computing system with powerful simulation capabilities. To date, our researchers have designed and built two fully programmable prototype systems, where they test new system architectures by evaluating design choices that affect connectivity, efficiency, complexity, and control.
Sensing and detection: LLNL has a long history of developing sophisticated sensing and detection technology, and we are exploring ways to exceed the capabilities of today’s tools by exploiting quantum phenomena, such as entanglement, Bose–Einstein statistics, and wave–particle duality.
Applications and Industries
Partnership opportunities exist for companies and Institutions interested in developing novel quantum computing capabilities. Key areas of research include:
- Synthesis and characterization of materials with special quantum properties
- Developing a fundamental understanding and control of the sources of noise and decoherence in quantum systems
- Careful engineering of the interface between quantum and classical control, sensing, and computing elements
Benefits
Quantum-coherent device physics: Our physicists combine qubits in new configurations to enable faster
calculations, such as a system where all qubits are interconnected. They
also develop qubits with unique resonator geometries, enabling better
control of the electrical flow and improving coherence time, including
3D resonators fabricated via additive manufacturing with cavity shapes
that enable better qubit control.
Quantum materials: Our teams are engineering complex metamaterials with new geometries and
tailored properties, as well as expanding our ability to design,
synthesize, and manipulate the properties of quantum materials. We
develop materials that can function at the extremely low temperatures
required for quantum coherence, while remaining stable over long time
frames. The materials need to be immune to environmental noise and free
from defects that can reduce quantum coherence and degrade performance.
Quantum–classical interfaces: Our researchers are exploring ways to use low-noise, high-fidelity, radio frequency signal generation, transport, and measurement to increase the information capacity of a novel quantum–classical interface.
Computing and simulation: We are exploring ways to connect and control multiple qubits, to
identify the ideal number of qubits in a system, and to isolate the
system from the environment, control it, and prolong coherence. In
addition, we are also developing advanced quantum control techniques for
quantum computing environments as well as new mathematical approaches
to machine learning that are more amenable to implementation on quantum
computers than today’s algorithms.
Sensing and detection: We are exploring ways to manipulate superposition and entanglement to achieve multi-photon quantum states that can support ultra-high-resolution sensing and imaging capabilities. These atomic-scale, optical and microwave sensing capabilities are expected to provide control and intrinsic self-calibration for real-time, high-impact applications. New quantum sensing capabilities will support LLNL’s efforts to solve mission-relevant challenges in areas such as remote sensing, gravity gradiometry, and inertial motion
Attachments
