Double lens device for tunable harmonic generation of laser beams in KKBBF/RBBF crystals

Stage: N/A
Iowa State University and Ames Laboratory researchers have developed an improvement to KBBF crystal systems for the generation of ultraviolet laser light by creating an alternative prism geometry that eliminates the need for contacting fluid or optical coupling devices.


Lasers consisting of light from the ultra-violet portion of the spectrum have both scientific and commercial applications. Scientifically, vacuum ultraviolet (VUV) lasers can be used in angle resolved photoemission spectroscopy to study the electronic parameters of solids. Commercially VUV lasers are of interest in semiconductor manufacturing, as the wavelength of the higher frequency spectra could produce much finer structures using photolithography. One source for generation of VUV lasers is passing a lower frequency laser beam through potassium beryllium fluoroborate (KBBF) crystals, resulting in a harmonic frequency laser. For economic reasons, KBBF crystals are grown very thin; as incident light upon the crystals is at a very acute angle, the resultant VUV laser has a low efficiency as most of the light is subsequently reflected off the surface of the crystal.

Applications and Industries

Laser optics, Semiconductor manufacturing

Benefits

Generates desired ultraviolet laser light Alternative prism geometry Eliminates the need for contacting fluid or optical coupling Allows for easy tuning of the laser beam