Lab Partnering Service Discovery
Use the LPS faceted search filters, or search by keywords, to narrow your results.
Search Results: 14 results (0.006 seconds)
Types
Technologies
Specialties
Labs

He is well known for his expertise in the field of lithium batteries at Argonne National Laboratory. Since graduating with a doctorate in metallurgical engineering from the University of Illinois at Urbana-Champaign, he has been with the lab with his early research on safe storage of nuclear waste arising from efforts to recycle spent nuclear fuel (nuclear technology). Since joining the Energy Storage team in 2001, he led the effort to identify performance degradation mechanisms in lithium-ion cells and develop new chemistries that enhance cell performance, life, and safety. His interests range from the discovery and development of electrode and electrolyte materials for sustainable and environmentally friendly batteries to recycling existing lithium-ion cells to recover non-renewable components. He has authored more than 120 articles in peer-reviewed journals spanning various frontier areas of lithium battery research, including crystal structure transformations in layered oxides, silicon electrode development, solid electrolyte interphase (SEI) formation/dissolution mechanisms, evolution of stress in electrodes during cycling, influence of electrode/particle coatings on cell performance, electrolyte additives development, and electrochemical modeling. He has delivered more than 250 technical presentations in popular, academic, and industrial settings, including more than 90 invited, keynote, and plenary lectures. More importantly, he is a research advisor and mentor to various undergraduate and graduate students and postdoctoral associates. He was awarded the 2015 Pinnacle of Education Award by the University of Chicago for “exceptional work in the supervision of postdoctoral employees and in developing the next generation of scientists and engineers.”

She is the manager of the Department of Human Factors, Controls, and Statistics at Idaho National Laboratory (INL). She graduated from Montana State University with a doctorate in mathematics with an emphasis in numerical analysis, followed by a postdoctoral fellowship in industrial mathematics at the Center for Research in Scientific Computation at North Carolina State University. Prior to joining INL in 2010, she worked for Sentient Corporation and served as a principal investigator for several Small Business Innovation Research projects in the area of prognostic health management. She has extensive experience in data processing and analysis using the SAS programming environment and MATLAB, and served as the technical lead for the Nuclear Data Management and Analysis System from 2014 to 2017. She has also provided analytical support as needed for a variety of projects at INL, including high-temperature materials characterization and fuel performance.

He is a computer scientist in the Global Security Sciences Division at Argonne National Laboratory working on a variety of Modeling and Simulation (M&S) projects. He is an integral part of the Analysis of Mobility Platforms (AMP) logistics modeling project for U.S. Transportation Command. He has also been the lead investigator on a program for the Naval Research Laboratory doing Electronic Warfare (EW) M&S, which includes both EW system modeling as well as detailed Radio Frequency (RF) propagation modeling in complex environments. Among his research interests is the development of remotely distributed deep-learning image recognition systems for Unmanned Aerial Systems (UAS) detection. He participated in numerous government and military test and evaluation events for UAS mitigation systems and did analysis on UAS threats to critical infrastructure and methods for protection. He graduated from Carnegie Mellon University with a degree in computer science and robotics and is currently pursuing a master's in analytics at the University of Chicago with an emphasis on advanced computational models, including computer vision and machine learning algorithms.

He received his bachelor's in chemistry from Reed College in 1990, and his doctorate in chemistry from Harvard University in 1996. He specializes in multi-disciplinary problem solving in the physical sciences and their corresponding engineering disciplines. Over his 22-year research and development (R&D) career, he has developed expertise in physical chemistry, chemical kinetics, atmospheric chemistry, instrumentation, electronics (digital, analog, power, and RF), spectroscopic sensing, lasers, fiber optics and wave guides, classical optics, electro-optics, electromagnetics, electromechanical systems, heat transfer, materials science, mechanical engineering, manufacturing processes, and renewable energy technologies.
He has won four R&D 100 Awards, holds numerous patents, has 10 active licenses on his inventions, and given many invited talks on the subject of serial innovation. In 2015, he was selected by the U.S. Department of Energy as its Inaugural SunShot Innovator in Residence. He invented the Radical-Ion Flow Battery under the SunShot Innovator in Residence Program to address the need for low-cost, highly scalable electrochemical grid storage, and the performance limitations of prior art battery chemistries in this demanding application. His current research portfolio is focused on electrochemical grid storage, the elimination of rare-earth magnets in wind turbines, and semiconductor thermal management (power electronics, CPUs, GPUs).

She has expertise in adaptive and optimal control, multi-agent systems, artificial intelligence and methods of distributed optimization with strong building and heating, ventilation, and air conditioning (HVAC) system control application experience. At Pacific Northwest National Laboratory, she is responsible for development of advanced control technologies applicable to buildings and HVAC systems, power grid controls, and building to grid interaction.

He is a senior research fellow for Energy Conversion Engineering at National Energy Technology Laboratory with more than 30 years of experience in energy systems research, including all types of energy conversion devices. He has lead or directed projects investigating turbine technologies, fuel cells, carbon dioxide capture, combustion, heat transfer, coal/biomass gasification, fuel processing, sensors, controls, magnetohydrodynamics, and geothermal energy. In addition to conducting his own research, his responsibilities include developing and executing cooperative research agreements with private industry and academia and evaluating proposed concepts related to energy conversion. He serves as an associate editor for the American Institute of Aeronautics and Astronautics Journal of Propulsion and Power. He received his doctorate in mechanical engineering from Purdue University, master’s in mechanical engineering, and bachelor’s in physics and mechanical engineering from Clarkson University.

He is currently a senior chemist and group leader at Argonne National Laboratory specializing in the testing and post-test analysis of cells and complete battery systems with over 34 years of experience. He is known worldwide for his work in battery testing and life modeling. He has a bachelor’s in chemistry from Brown University and a doctorate in inorganic chemistry from University of Chicago. He is active in the battery materials and testing fields and has more than 120 publications and eight patents. He received an IR-100 Award in 1987 for a micro-membrane sensor to measure sodium-ion concentrations at elevated temperature. He participated in the creation of international recommended practices (one step before a standard) in battery testing. His work in battery life estimation led to the creation of software, which became the recognized standard for life estimation for battery development projects funded by U.S. Advanced Battery Consortium and the U.S. Department of Energy. In 2011, he established the post-test facility for the elucidation of the physical and chemical changes that cause battery performance decline.

He is the lead for Cyber Operations, Analysis, and Research in Argonne National Laboratory’s Global Security Sciences Division. He is considered a key asset by the U.S. Department of Homeland Security (DHS) for the development of a cybersecurity vulnerability assessment for field use, analysis of cyber-security consequence and threat studies, and leading the pilot cyber-physical regional assessment. Prior to joining Argonne, he managed cyber-security and cyber defense activities at several private-sector companies and involved in the development of a patented operational instance of moving target defense (MTD). He worked in a variety of other cybersecurity research areas, including transportation, satellite communications, social engineering, and offensive cybersecurity. He taught computer networking and cyber-security issues to students in Senegal, Africa through the African Institute for Mathematical Sciences (AIMS) Next Einstein Initiative, a collaboration with the University of Chicago, Argonne, and other institutions.

He is a research scientist specializing in crosscutting applications and advancement of sensor research to enable resilient real-time measurement and control of process variables within the nuclear and other critical industries. His research expertise includes applications of pattern recognition and machine learning techniques, instrumentation and controls, data analytics, battery modeling, risk and reliability, digital signal processing, acoustic telemetry, diagnosis/prognosis using wavelets and empirical mode decomposition, time series analysis, power management, wireless communication protocols, and wireless sensor networks. He has authored 51 peer-reviewed publications and one book chapter, and two U.S. patent applications filed. To date, he was involved in 13 research projects and has been the principal investigator for eight. He serves as a reviewer for the Institute of Electrical and Electronics Engineers (IEEE) Transactions on Image Processing, Energy Conversion, Industrial Informatics, Industrial Applications, Power Delivery, Systems, Machine and Cybernetics, Instrumentation and Measurement, and the American Nuclear Society (ANS) Transactions on Nuclear Technology. He serves as an external reviewer for U.S. Department of Energy’s Office of Science and Office of Nuclear Energy. Since 2009, he has been section editor for the Journal of Pattern Recognition Research. Since 2015, he has served as an elected member of the ANS Human Factors, Instrumentation, and Controls Division and the American Society of Mechanical Engineers Nondestructive Prognostics and Diagnostic Division since 2016.

He is a chemical engineer at Argonne National Laboratory with specializations in process analysis and modeling, and experimental validation of breadboard reactor systems. His interests include the design and technoeconomic analysis of lithium-ion batteries and production process of these batteries and their supply chain. He is responsible for the continuing development of BatPaC, a spreadsheet tool used for the design of lithium ion batteries and to estimate their cost. He is active in the analysis of vehicle batteries and production processes. He has conducted extensive analytical and experimental studies on the development of portable and distributed hydrogen production processes. These studies include the development of catalysts, reactor designs for the conversion of liquid and gaseous fuels to hydrogen, breadboard demonstrations, hydrogen concentrators, along with modeling studies of fuel cell systems, hydrogen production processes, and materials used in the production of lithium-ion batteries.

He is a technical staff member at the Materials Synthesis and Integrated Devices (MPA-11) group. He received his Ph.D. in Materials Science and Engineering from the University of Pennsylvania (Philadelphia) in February 1997. His thesis titled "Characterization of Mixed-Conducting Barium Cerate-Based Perovskites for Potential Fuel Cell Applications" was awarded the S. J. Stein Prize for superior achievement in the field of new or unique materials in electronics. His current research interests include fuel cells, energy storage devices, and electrochemical gas sensors. He currently serves as a Thrust Area Leader for the Consortium on Fuel Cell Performance and Durability (FC-PAD) and is PI on an energy storage project that develops non-aqueous flow batteries. He also serves as program manager for the DOE-EERE- Fuel Cell Technologies Office -hydrogen safety codes and standards sub program. He has led several projects at LANL funded by various agencies including, EERE-Fuel Cell Technologies office, ARPA-E, and EERE-Vehicle Technologies. He is the co-inventor on 6 US patents and has authored over 150 peer-reviewed journal and transaction papers, cited over 6000 times. His work has also been recognized through numerous awards including two R&D 100 awards in 1999 and 2017, the Scientific American’s top 50 Science and Technology achievements for 2003, the J.B Wagner Award of the High Temperature Materials Division of the Electrochemical Society in 2005 and the Sensor Division outstanding achievement award in 2016. He is a fellow of the Electrochemical Society and is currently serving as the technical editor in the area of Sensors and Measurement Sciences for the ECS Journals.

His expertise in the solar area is focused on photovoltaic module reliability with emphasis on testing for water ingress and lifetime service prediction. Experimental capabilities in our group, includes sample fabrication in clean room facilities, spectroscopic characterization of water content up to module sized samples in near and mid infrared, and direct determination of water in polymers with Karl Fisher oven drying titration. Modelling capabilities in our group, include numerical simulation of diffusion in polymeric material, ray-tracing modelling through complex structures (including non-linear absorbance, scattering, and optimization), and ab initio simulations of interaction of water with polymers. Our group has been collaborating with solar industry partners to assess water ingress in solar modules as part of product development cycle.