Lab Partnering Service Discovery
Use the LPS faceted search filters, or search by keywords, to narrow your results.

Energy research represents a major focus for BNL over the next decade. We are using a multifaceted approach driven by the unique state-of-the art laboratory facilities and the inter-disciplinary expertise of our scientific staff to solve fundamental questions regarding U.S. energy independence and to translate discoveries into deployable technologies. The laboratory has identified several energy focus areas – including biofuels, complex materials, catalysis, and solar energy.
BNL's one-of-kind user facilities include the National Synchrotron Light Source II NSLS-II, which produces extremely bright beams of x-ray, ultraviolet, and infrared light for scientists exploring materials—including superconductors, catalysts, geological samples, and proteins—to accelerate advances in energy, environmental science, and medicine. Scientists at our Center for Functional Nanomaterials create materials and explore their unique structure and properties at the nanoscale, with a focus on more efficient solar and energy storage materials. And at BNL's Northeast Solar Energy Research Center, where researchers from labs, academia, and industry study test new solar technologies, working to make solar "power plants" more efficient and economical
In addition to fundamental research, the laboratory actively collaborates with industry and other academic institutions to bring the benefits of scientific discoveries to the marketplace. Brookhaven's Office of Strategic Partnerships integrates Brookhaven Lab's industry engagement, technology licensing, and economic development functions to expand the impact of collaborative research and technology commercialization. Strategic Partnerships supports the Laboratory's science mission through identifying, pursuing and managing partnerships with a broad set of private-sector companies, federal agencies, and non-federal entities. For information on licensing and industry.
Dr. Iadecolais a theoretical physicist using diverse analytical and numerical tools to study a variety of topics in quantum condensed matter. A graduate of Brown University (Sc.B., 2012), he received his Ph.D. in Physics from Boston University in 2017. He then became a JQI Theoretical Postdoctoral Fellow at the NIST-University of Maryland Joint Quantum Institute until 2019, when he joined Iowa State University as an Assistant Professor. Research in his group focuses on out-of-equilibrium quantum systems and topological phases with a view towards emerging quantum technologies. On the nonequilibrium side, he studies properties of highly-excited many-body states and the surprising phenomena they harbor that challenge deeply ingrained intuition based on quantum statistical mechanics. On the topological side, he focuses on states of matter whose properties cannot be understood within the traditional paradigm of spontaneous symmetry breaking, and which could enable the robust storage and manipulation of quantum information. In addition to thinking about new phenomena, he grapples with ways to realize them in electronic and photonic systems, or using near-term quantum platforms.

- Basic science: seeks to understand how nature works. This research includes experimental and theoretical work in materials science, physics, chemistry, biology, high-energy physics, and mathematics and computer science, including high performance computing.
- Applied science and engineering helps to find practical solutions to society’s problems. These programs focus primarily on energy resources, environmental management and national security.
.jpg)

Jonathan Carter is the Associate Laboratory Director for Computing Sciences at Lawrence Berkeley National Laboratory (Berkeley Lab). The Computing Sciences Area at Berkeley Lab encompasses the National Energy Research Scientific Computing Division (NERSC), the Scientific Networking Division (home to the Energy Sciences Network, ESnet) and the Computational Research Division.
Dr. Carter's research interests are in the evaluation of system architectures and algorithms for high-performance computing, and in computational chemistry and physics simulations. Recently he has been engaged in a project to look at computer architectures beyond the end of Moore's Law and has focused on techniques to perform simulations for computational chemistry using newly developed quantum computing test-beds. He brings a unique perspective to his work, formed from using computing resources as a domain scientist, from performing performance analyses of computer architectures, and from his experience in moving large-scale computational systems from idea to reality.
Carter joined Computing Sciences as part of the National Energy Research Scientific Computing (NERSC) Division at the end of 1996, working with a broad range of scientists to optimize applications, transition projects from shared-memory vector systems to massively parallel systems, and providing in-depth consulting for materials scientists and chemists using NERSC. He became group leader of the consulting group at the end of 2005. During his time at NERSC, he led or played a lead role in teams that procured and deployed three of the fastest computing systems in the world.
Areas of expertise: quantum computing, beyond Moore's Law computer architectures, high-performance computing (HPC) / supercomputing, and computational chemistry.

Theoretical chemist Todd Martínez develops and applies new methods that predict and explain how atoms move in molecules. These methods are used both to design new molecules and to understand the behavior of those that already exist. His research group studies the response of molecules to light (photochemistry) and external force (mechanochemistry). Photochemistry is a critical part of human vision, single-molecule spectroscopy, harnessing solar energy (either to make fuels or electricity), and even organic synthesis. Mechanochemistry represents a novel scheme to promote unusual reactions and potentially to create self-healing materials that resist degradation. The underlying tools embody the full gamut of quantum mechanical effects governing molecules, from chemical bond breaking/formation to electron/proton transfer and electronic excited states.
Martínez received his PhD in chemistry from UCLA in 1994. After postdoctoral study at UCLA and the Hebrew University in Jerusalem, he joined the faculty at the University of Illinois in 1996. In 2009, he joined the faculty at Stanford, where he is now the Ehrsam and Franklin Professor of Chemistry and Professor of Photon Science at SLAC National Accelerator Laboratory. He has received numerous awards for his contributions, including a MacArthur Fellowship (commonly known as the “genius award”). He is co-editor of Annual Reviews in Physical Chemistry, associate editor of The Journal of Chemical Physics, and an elected fellow of the American Academy of Arts and Sciences.
Current research in the Martínez lab aims to make molecular modeling both predictive and routine. New approaches to interactive molecular simulation are being developed, in which users interact with a virtual-reality based molecular modeling kit that fully understands quantum mechanics. New techniques to discover heretofore unknown chemical reactions are being developed and tested, exploiting the many efficient methods that the Martínez group has introduced for solving quantum mechanical problems quickly, using a combination of physical/chemical insights and commodity videogaming hardware. For more details, please visit http://mtzweb.stanford.edu.

Fermilab is America's premier laboratory for particle physics and accelerator research. Since 1967, Fermilab has worked to expand humanity's understanding of matter, energy, space and time, studying the smallest building blocks of matter using some of the largest and most complex machines in the world.
The laboratory's 6,800-acre site is located in Batavia, Illinois, and its 1,700-plus employees include scientists and engineers from around the world. More than 4,000 scientists from over 50 countries also collaborate with Fermilab to build and operate world-leading accelerator, detector and computing facilities to investigate the physics of fundamental particles.
One of the world's pioneering laboratories for accelerator science and technology, Fermilab is home to the 83,000-square-foot Illinois Accelerator Research Center (IARC), where lab scientists and engineers partner with industry to translate technology developed in the pursuit of science into the next generation of industrial accelerators, products and applications. The center features an experimental area and provides state-of-the-art facilities for visiting scientists and entrepreneurs, including the Accelerator Applications Development and Demonstration (A2D2) machine, a test platform for electron-beam- and X-ray-based inspection and testing.
Fermilab's Office of Partnerships and Technology Transfer is a vital part of the laboratory, transitioning technologies to private-sector partners to enhance the nation's economic competitiveness. The office enables the formation of high-impact partnerships with industry, academia and other institutions that support the global and scientific missions of the lab.