Dr. Yuyan Shao is an electrochemist and materials scientist with a focus on electrochemical energy storage and conversion for both transportation and stationary applications. He is active in fundamental and applied research of high-performing electrode and electrolyte materials for batteries, fuel cells, etc. His research also includes new electrochemical energy system design and development. He is an author on more than 140 publications and 40 patents/patent applications.
He has been a Scientist at Los Alamos National Laboratory since 1999, starting as a post-doctoral researcher in 1994. Rod is the Los Alamos Program Manager for the Fuel Cell and Vehicle Technologies Programs. He has worked on fuel cells for transportation at both Los Alamos and General Motors. He has 13 U.S. patents, authored over 100 papers related to fuel cell technology with over 8300 citations and an H-factor of 34. He has led projects on hydrogen production, water transport and PEM fuel cell durability. He was the Principal Investigator for the 2004 Fuel Cell Seminar Best Poster Award, was awarded the 2005 DOE Hydrogen Program R&D Award for his team's work in fuel cell durability, received the U.S. Drive 2012 Tech Team Award for the Fuel Cell Technical Team, was recently selected as the 2014 winner of the Research Award of the Energy Technology Division of the Electrochemical Society and PI for the 2015 Fuel Cell Seminar Best Poster Award. He received a 2016 DOE Fuel Cell Technologies Office Annual Merit Award for Fuel Cells. He is a member of the DOE/US Drive Fuel Cell Technical Team, and is co-chair of the DOE Fuel Cell Technologies Office Durability Working Group and Director for the multi-lab consortium for Fuel Cell Performance and Durability (FC-PAD). As PI/co-PI, he has directed over $50M of funding at Los Alamos.
He received his bachelor's in chemistry from Reed College in 1990, and his doctorate in chemistry from Harvard University in 1996. He specializes in multi-disciplinary problem solving in the physical sciences and their corresponding engineering disciplines. Over his 22-year research and development (R&D) career, he has developed expertise in physical chemistry, chemical kinetics, atmospheric chemistry, instrumentation, electronics (digital, analog, power, and RF), spectroscopic sensing, lasers, fiber optics and wave guides, classical optics, electro-optics, electromagnetics, electromechanical systems, heat transfer, materials science, mechanical engineering, manufacturing processes, and renewable energy technologies.
He has won four R&D 100 Awards, holds numerous patents, has 10 active licenses on his inventions, and given many invited talks on the subject of serial innovation. In 2015, he was selected by the U.S. Department of Energy as its Inaugural SunShot Innovator in Residence. He invented the Radical-Ion Flow Battery under the SunShot Innovator in Residence Program to address the need for low-cost, highly scalable electrochemical grid storage, and the performance limitations of prior art battery chemistries in this demanding application. His current research portfolio is focused on electrochemical grid storage, the elimination of rare-earth magnets in wind turbines, and semiconductor thermal management (power electronics, CPUs, GPUs).
He is the Applied Energy Materials group leader focusing on lithium battery research and development. He leads U.S. Department of Energy and privately funded projects in developing conductive binders and applying lithium metal to improve battery performance. He also serves as a scientific advisor to startup companies and international corporations commercializing new battery technologies. His work has been published in journals, including Advanced Materials, Journal of the American Chemical Society, and Natural Communications. He received national and international awards for his battery technologies, including 2013 and 2015 R&D 100 Awards and a FMC Scientific Achievement Award.
Fill out the information below to ask your energy technology question. Our target response time is 14 business days; however, any individual may not be available to meet this target though we strive to provide a timely response.