Lab Partnering Service Discovery
Use the LPS faceted search filters, or search by keywords, to narrow your results.

Lawrence Berkeley National Laboratory (Berkeley Lab), a U. S. Department of Energy Office of Science national lab managed by the University of California, delivers science solutions to the world â solutions derived from hundreds of patented and patent pending technologies plus scores of copyrighted software tools and published, peer-reviewed manuscripts.
Berkeley Lab has more than one hundred cutting-edge research projects using AI to find new scientific solutions to national problems. Through this effort, computer scientists, mathematicians, and domain scientists are collaborating to turn burgeoning datasets into scientific insights. Visit Berkeley Labâs Machine Learning for Science site for more information.
Berkeley Labâs advanced materials expertise is applied to innovation in batteries and other energy storage technologies, semiconductors, and photovoltaics. Additional energy-related areas of expertise include grid modernization and security, bio-based fuels and chemicals and building energy and demand response. Several National User Facilities are available for collaborative engagement: the Advanced Light Source, Molecular Foundry, National Energy Research Scientific Computing Center (NERSC), Energy Sciences Network, and the Joint Genome Institute. Other specialized facilities include FLEXLAB for building energy research and the Advanced Biofuels Process Demonstration Unit.
Ernest Orlando Lawrence, the lab's founder, believed team science yielded the greatest discoveries. That belief is reflected today in interdisciplinary teams and collaborative projects connecting Berkeley Lab, industry, and other research organizations. Berkeley Lab's Intellectual Property Office, connects industry partners with lab innovations and unique facilities to enable lab-to-market transition.

Dr. Viktor P. Balema is a Senior Scientist at Ames Laboratory. He joint the laboratory in 2016 to lead new materials development and commercialization at Ames’ led DOE consortium (CaloriCool) founded by US Department of Energy’s Advanced Manufacturing Office. His technical expertise comprises development of biologically active compounds, hard and hybrid materials, polymers and chemical recycling.
Before joining Ames Laboratory, Viktor served in various leading roles, including Hard Materials Head and Global R&D Manager, at Sigma-Aldrich Corporation - a major materials supplier to research and commercial markets. Once at Ames Laboratory, Dr. Balema served on the laboratory’s Research Management Team and Technical Advisory Committee of REMADE Institute and contributed to the development of the Strategic Plan for Ames Laboratory.
Scientific expertise of Dr. Balema spans over chemistry of bio-active agents, synthetic materials chemistry as well as upcycling of spent products, including rare earths and polymers. Viktor published over 70 papers, reviews and proceedings in open literature and filed ~15 US and international patents and IP disclosures. He also developed and commercialized numerous proprietary materials that have been offered through diverse business channels.

A strong science, technology, and engineering foundation enables Sandia's mission through a capable research staff working at the forefront of innovation, collaborative research with universities and companies, and discretionary research projects with significant potential impact. Sandia is committed to hiring the nation’s best and brightest, equipping them with world class tools and facilities while providing opportunities to collaborate with technical experts from many different scientific disciplines. To ensure our fundamental science and engineering core is vibrant and cutting edge, Sandia has chosen to invest in the following research foundations: Bioscience, Computing and Information Science, Engineering Science, Geoscience, Materials Science, Nanodevices and Microsystems, Radiation Effects and High Energy Density Science. These diverse research areas enable a multidisciplinary approach to resolve emerging national security problems.
.png)
Dr. Peterman is a distinguished staff scientist within the Aqueous Separations and Radiochemistry department at Idaho National Laboratory (INL). He has expertise in nuclear fuel cycle separations, radiation chemistry and f-element solution chemistry. At INL he has developed processes for the separation of fission products from acidic dissolved nuclear fuel, and developed and characterized fluorinated aromatic dithiophosphinic acid extractants. These unusual molecules exhibit remarkable selectivity for trivalent actinides over fission product lanthanides, which is a key unresolved challenge in developing closed nuclear fuel cycles. In the area of radiation chemistry, he designed and commissioned an irradiation test loop for the investigation of gamma radiolytic degradation of solvent extraction process flowsheets. He has numerous publications in the areas of separations chemistry and radiation chemistry, and holds seven US patents. His research teams have been recognized with an R&D 100 Award in 2011, a 2014 Secretary of Energy’s Honor Award for Salt Waste Disposal Technologies and a 2015 US-DOE Certificate of Appreciation for the INL Solvent Degradation and Radiation Chemistry Team.

- Advanced Test Reactor Complex, the nation’s premier resource for fuels and material irradiation testing, nuclear safety research and nuclear isotope production;.
- Materials and Fuels Complex, the center of DOE’s advanced nuclear fuel development initiatives and post-irradiation capabilities;.
- Research and Education Campus, the front door to INL and the center of INL’s computing capabilities, with a variety of research, administrative, educational and technical support facilities.
INL is responding to the growing demands of our modern world with innovations in transportation systems, renewable energy integration, advanced manufacturing, biomass feedstock assembly and environmental sustainability. INL also helps the U.S. departments of Defense and Homeland Security by using its unique capabilities to support efforts to secure industrial control systems from cyber and nuclear threats, develop advanced nuclear facility safeguards, and design advanced wireless sensors and protocols. INL enables explosives impact analysis, armor development and radiological training. To enrich and focus this research and development portfolio, INL is committed to collaboration with regional, national and international leaders in academia, industry and government.