Lab Partnering Service Discovery
Use the LPS faceted search filters, or search by keywords, to narrow your results.





Oak Ridge National Laboratory is the largest U.S. Department of Energy science and energy laboratory, conducting basic and applied research to deliver transformative solutions to compelling problems in energy and security. ORNL's diverse capabilities span a broad range of scientific and engineering disciplines, enabling the Laboratory to explore fundamental science challenges and to carry out the research needed to accelerate the delivery of solutions to the marketplace. ORNL supports DOE's national missions of:
- Scientific discovery—We assemble teams of experts from diverse backgrounds, equip them with powerful instruments and research facilities, and address compelling national problems;
- Clean energy—We deliver energy technology solutions for energy-efficient buildings, transportation, and manufacturing, and we study biological, environmental, and climate systems in order to develop new biofuels and bioproducts and to explore the impacts of climate change;
- Security—We develop and deploy "first-of-a-kind" science-based security technologies to make the world a safer place.
ORNL supports these missions through leadership in four major areas of science and technology:
- Neutrons—We operate two of the world's leading neutron sources, which enable scientists and engineers to gain new insights into materials and biological systems;
- Computing—We accelerate scientific discovery through modeling and simulation on powerful supercomputers, advance data-intensive science, and sustain US leadership in high-performance computing;
- Materials—We integrate basic and applied research to develop advanced materials for energy applications;




The Y-12 National Security Complex in Oak Ridge, Tennessee, is one of six production facilities in the National Nuclear Security Administration's (NNSA's) Nuclear Security Enterprise (NSE). Y-12’s unique emphasis is the processing and storage of uranium and development of technologies associated with those activities. Decades of precision machining experience make Y-12 a production facility with capabilities unequaled nationwide.
Y-12 helps ensure a safe and effective U.S. nuclear weapons deterrent. We also retrieve and store nuclear materials, fuel the nation’s naval reactors, and perform complementary work for other government and private-sector entities.
Since 1943, Y-12 has played a key role in strengthening our country’s national security and reducing the global threat from weapons of mass destruction. Y-12 has evolved to become the complex the nation looks to for support in protecting America's future, developing innovative solutions in manufacturing technologies, prototyping, safeguards and security, technical computing and environmental stewardship.
In meeting the country’s evolving nuclear security needs, Y-12 has developed unique skills and acquired a wealth of experience that benefit the nation and world. Expertise in science-based product evaluation, materials science, precision manufacturing, applied manufacturing technology, nuclear nonproliferation, data-driven operations management, and the handling of nuclear materials has spurred scientific research and sparked innovation.
Consolidated Nuclear Security, LLC manages and operates the facility along with the Pantex Plant in Texas under a single contract from the U.S. Department of Energy/NNSA.


Title: Physicist and Advanced Energy Materials Group Leader
Expertise: Advanced Materials and Quantum Information Science
Dr. Qiang Li holds a joint appointment as a SUNY Empire Innovation Professor in Stony Brook University and a Physicist in the Condensed Matter Physics and Materials Science Department at BNL, where he is the head of Advanced Energy Materials Group which studies microscopic and macroscopic properties of complex and nano-structured materials with a view to basic science understanding and developing their application in energy and quantum information sciences related technologies. His current research ranges from basic physics and material science studies to the applications of superconducting materials, topological quantum materials, and thermoelectrics. His fundamental science work has seen practical application in the superconducting wires and switches now being developed for use in the electricity transmission, grid protection, electrical machines, superconducting qubits for quantum computing, and in thermoelectric power generators now being developed for vehicle waste heat recovery.
