Lab Partnering Service Discovery
Use the LPS faceted search filters, or search by keywords, to narrow your results.

He is a staff scientist and facility director at Lawrence Berkeley National Laboratory’s Molecular Foundry leading research in thermoelectrics and hydrogen storage. His research focuses on the materials and physics of mass, heat, and charge transport in complex hybrid nanomaterials. His expertise is developing new materials and measurement tools for solid-state energy storage and conversion applications; investigating transport at the organic-inorganic interface; and identifying energy efficient desalination methods.
Areas of expertise: energy storage, hydrogen storage, thermoelectrics, new materials for desalination and water remediation, 2D materials, nanotechnology


Lawrence Berkeley National Laboratory (Berkeley Lab), a U. S. Department of Energy Office of Science national lab managed by the University of California, delivers science solutions to the world â solutions derived from hundreds of patented and patent pending technologies plus scores of copyrighted software tools and published, peer-reviewed manuscripts.
Berkeley Lab has more than one hundred cutting-edge research projects using AI to find new scientific solutions to national problems. Through this effort, computer scientists, mathematicians, and domain scientists are collaborating to turn burgeoning datasets into scientific insights. Visit Berkeley Labâs Machine Learning for Science site for more information.
Berkeley Labâs advanced materials expertise is applied to innovation in batteries and other energy storage technologies, semiconductors, and photovoltaics. Additional energy-related areas of expertise include grid modernization and security, bio-based fuels and chemicals and building energy and demand response. Several National User Facilities are available for collaborative engagement: the Advanced Light Source, Molecular Foundry, National Energy Research Scientific Computing Center (NERSC), Energy Sciences Network, and the Joint Genome Institute. Other specialized facilities include FLEXLAB for building energy research and the Advanced Biofuels Process Demonstration Unit.
Ernest Orlando Lawrence, the lab's founder, believed team science yielded the greatest discoveries. That belief is reflected today in interdisciplinary teams and collaborative projects connecting Berkeley Lab, industry, and other research organizations. Berkeley Lab's Intellectual Property Office, connects industry partners with lab innovations and unique facilities to enable lab-to-market transition.




Fermilab is America's premier laboratory for particle physics and accelerator research. Since 1967, Fermilab has worked to expand humanity's understanding of matter, energy, space and time, studying the smallest building blocks of matter using some of the largest and most complex machines in the world.
The laboratory's 6,800-acre site is located in Batavia, Illinois, and its 1,700-plus employees include scientists and engineers from around the world. More than 4,000 scientists from over 50 countries also collaborate with Fermilab to build and operate world-leading accelerator, detector and computing facilities to investigate the physics of fundamental particles.
One of the world's pioneering laboratories for accelerator science and technology, Fermilab is home to the 83,000-square-foot Illinois Accelerator Research Center (IARC), where lab scientists and engineers partner with industry to translate technology developed in the pursuit of science into the next generation of industrial accelerators, products and applications. The center features an experimental area and provides state-of-the-art facilities for visiting scientists and entrepreneurs, including the Accelerator Applications Development and Demonstration (A2D2) machine, a test platform for electron-beam- and X-ray-based inspection and testing.
Fermilab's Office of Partnerships and Technology Transfer is a vital part of the laboratory, transitioning technologies to private-sector partners to enhance the nation's economic competitiveness. The office enables the formation of high-impact partnerships with industry, academia and other institutions that support the global and scientific missions of the lab.

- Basic science: seeks to understand how nature works. This research includes experimental and theoretical work in materials science, physics, chemistry, biology, high-energy physics, and mathematics and computer science, including high performance computing.
- Applied science and engineering helps to find practical solutions to society’s problems. These programs focus primarily on energy resources, environmental management and national security.




Matthew Kramer has been Division Director for Materials Sciences and Engineering (DMSE) since 2014. He is also an adjunct professor of Materials Science and Engineering at Iowa State University. As DMSE director, Kramer oversees budgets, proposal preparation, Materials Preparation Center administration, and Sensitive Instrument Facility oversight. DMSE includes 13 FWPs (BES funded), EFRC CATS, approximately 13 additional DOE funded projects, and a small number of Strategic Partnership Projects. Kramer joined Ames Laboratory in 1988, specializing in the areas Structure and properties of glass forming metallic alloys, aperiodic intermetallic alloys, permanent magnets and high temperature alloys, development of in situ time resolved methods using electron microscopy and high energy X-ray diffraction, analytical electron microscopy, and advanced imaging techniques for understanding rapid solidification. He holds B.S. and M.S degrees in geo mechanics and geology from the University of Rochester and a Ph.D. in geology from Iowa State University.