Lab Partnering Service Discovery
Use the LPS faceted search filters, or search by keywords, to narrow your results.


Dr. Yao is a theoretical and computational physicist, developing methods, algorithms, and codes to address condensed matter physics and materials science problems. With a degree of B.S. in department of intensive instruction in 2000 and M.S. in physics in 2003 from Nanjing University, China, he obtained his Ph.D. in physics from Iowa State University in 2009. After graduation, he took a postdoc position in Ames Laboratory. He was promoted to assistant scientist in 2011, associate scientist in 2015, and senior theoretical physicist in 2019, with an adjunct faculty position in department of Physics and Astronomy at Iowa State University. He is currently leading projects in the development of quantum computing approaches to solve ground state and dynamical properties of correlated quantum materials within the Gutzwiller quantum-classical embedding framework. He is also a key developer of the Gutzwiller density functional theory and rotationally-invariant Slave-Boson method and software.

Lawrence Berkeley National Laboratory (Berkeley Lab), a U. S. Department of Energy Office of Science national lab managed by the University of California, delivers science solutions to the world â solutions derived from hundreds of patented and patent pending technologies plus scores of copyrighted software tools and published, peer-reviewed manuscripts.
Berkeley Lab has more than one hundred cutting-edge research projects using AI to find new scientific solutions to national problems. Through this effort, computer scientists, mathematicians, and domain scientists are collaborating to turn burgeoning datasets into scientific insights. Visit Berkeley Labâs Machine Learning for Science site for more information.
Berkeley Labâs advanced materials expertise is applied to innovation in batteries and other energy storage technologies, semiconductors, and photovoltaics. Additional energy-related areas of expertise include grid modernization and security, bio-based fuels and chemicals and building energy and demand response. Several National User Facilities are available for collaborative engagement: the Advanced Light Source, Molecular Foundry, National Energy Research Scientific Computing Center (NERSC), Energy Sciences Network, and the Joint Genome Institute. Other specialized facilities include FLEXLAB for building energy research and the Advanced Biofuels Process Demonstration Unit.
Ernest Orlando Lawrence, the lab's founder, believed team science yielded the greatest discoveries. That belief is reflected today in interdisciplinary teams and collaborative projects connecting Berkeley Lab, industry, and other research organizations. Berkeley Lab's Intellectual Property Office, connects industry partners with lab innovations and unique facilities to enable lab-to-market transition.

A strong science, technology, and engineering foundation enables Sandia's mission through a capable research staff working at the forefront of innovation, collaborative research with universities and companies, and discretionary research projects with significant potential impact. Sandia is committed to hiring the nation’s best and brightest, equipping them with world class tools and facilities while providing opportunities to collaborate with technical experts from many different scientific disciplines. To ensure our fundamental science and engineering core is vibrant and cutting edge, Sandia has chosen to invest in the following research foundations: Bioscience, Computing and Information Science, Engineering Science, Geoscience, Materials Science, Nanodevices and Microsystems, Radiation Effects and High Energy Density Science. These diverse research areas enable a multidisciplinary approach to resolve emerging national security problems.
.png)

He is the facility director for Nanofabrication at the Molecular Foundry, a DOE national user facility for nanomaterials fabrication and research located at Berkeley Lab. He applies his experience in nanophotonics and plasmonics fabrication and characterization to the development of new lithographic tools and processes. He collaborates with industry partners and fellow researchers to advance nanofabrication, thin film deposition, and electron beam lithography technologies, among others.
Areas of expertise: nanoscience, new materials, quantum, electronics/semiconductors, micro-nano-fabrication, nanodevices
