Lab Partnering Service Discovery
Use the LPS faceted search filters, or search by keywords, to narrow your results.



- Basic science: seeks to understand how nature works. This research includes experimental and theoretical work in materials science, physics, chemistry, biology, high-energy physics, and mathematics and computer science, including high performance computing.
- Applied science and engineering helps to find practical solutions to society’s problems. These programs focus primarily on energy resources, environmental management and national security.

Lawrence Berkeley National Laboratory (Berkeley Lab), a U. S. Department of Energy Office of Science national lab managed by the University of California, delivers science solutions to the world â solutions derived from hundreds of patented and patent pending technologies plus scores of copyrighted software tools and published, peer-reviewed manuscripts.
Berkeley Lab has more than one hundred cutting-edge research projects using AI to find new scientific solutions to national problems. Through this effort, computer scientists, mathematicians, and domain scientists are collaborating to turn burgeoning datasets into scientific insights. Visit Berkeley Labâs Machine Learning for Science site for more information.
Berkeley Labâs advanced materials expertise is applied to innovation in batteries and other energy storage technologies, semiconductors, and photovoltaics. Additional energy-related areas of expertise include grid modernization and security, bio-based fuels and chemicals and building energy and demand response. Several National User Facilities are available for collaborative engagement: the Advanced Light Source, Molecular Foundry, National Energy Research Scientific Computing Center (NERSC), Energy Sciences Network, and the Joint Genome Institute. Other specialized facilities include FLEXLAB for building energy research and the Advanced Biofuels Process Demonstration Unit.
Ernest Orlando Lawrence, the lab's founder, believed team science yielded the greatest discoveries. That belief is reflected today in interdisciplinary teams and collaborative projects connecting Berkeley Lab, industry, and other research organizations. Berkeley Lab's Intellectual Property Office, connects industry partners with lab innovations and unique facilities to enable lab-to-market transition.

Fermilab is America's premier laboratory for particle physics and accelerator research. Since 1967, Fermilab has worked to expand humanity's understanding of matter, energy, space and time, studying the smallest building blocks of matter using some of the largest and most complex machines in the world.
The laboratory's 6,800-acre site is located in Batavia, Illinois, and its 1,700-plus employees include scientists and engineers from around the world. More than 4,000 scientists from over 50 countries also collaborate with Fermilab to build and operate world-leading accelerator, detector and computing facilities to investigate the physics of fundamental particles.
One of the world's pioneering laboratories for accelerator science and technology, Fermilab is home to the 83,000-square-foot Illinois Accelerator Research Center (IARC), where lab scientists and engineers partner with industry to translate technology developed in the pursuit of science into the next generation of industrial accelerators, products and applications. The center features an experimental area and provides state-of-the-art facilities for visiting scientists and entrepreneurs, including the Accelerator Applications Development and Demonstration (A2D2) machine, a test platform for electron-beam- and X-ray-based inspection and testing.
Fermilab's Office of Partnerships and Technology Transfer is a vital part of the laboratory, transitioning technologies to private-sector partners to enhance the nation's economic competitiveness. The office enables the formation of high-impact partnerships with industry, academia and other institutions that support the global and scientific missions of the lab.

Energy research represents a major focus for BNL over the next decade. We are using a multifaceted approach driven by the unique state-of-the art laboratory facilities and the inter-disciplinary expertise of our scientific staff to solve fundamental questions regarding U.S. energy independence and to translate discoveries into deployable technologies. The laboratory has identified several energy focus areas – including biofuels, complex materials, catalysis, and solar energy.
BNL's one-of-kind user facilities include the National Synchrotron Light Source II NSLS-II, which produces extremely bright beams of x-ray, ultraviolet, and infrared light for scientists exploring materials—including superconductors, catalysts, geological samples, and proteins—to accelerate advances in energy, environmental science, and medicine. Scientists at our Center for Functional Nanomaterials create materials and explore their unique structure and properties at the nanoscale, with a focus on more efficient solar and energy storage materials. And at BNL's Northeast Solar Energy Research Center, where researchers from labs, academia, and industry study test new solar technologies, working to make solar "power plants" more efficient and economical
In addition to fundamental research, the laboratory actively collaborates with industry and other academic institutions to bring the benefits of scientific discoveries to the marketplace. Brookhaven's Office of Strategic Partnerships integrates Brookhaven Lab's industry engagement, technology licensing, and economic development functions to expand the impact of collaborative research and technology commercialization. Strategic Partnerships supports the Laboratory's science mission through identifying, pursuing and managing partnerships with a broad set of private-sector companies, federal agencies, and non-federal entities. For information on licensing and industry.

A strong science, technology, and engineering foundation enables Sandia's mission through a capable research staff working at the forefront of innovation, collaborative research with universities and companies, and discretionary research projects with significant potential impact. Sandia is committed to hiring the nation’s best and brightest, equipping them with world class tools and facilities while providing opportunities to collaborate with technical experts from many different scientific disciplines. To ensure our fundamental science and engineering core is vibrant and cutting edge, Sandia has chosen to invest in the following research foundations: Bioscience, Computing and Information Science, Engineering Science, Geoscience, Materials Science, Nanodevices and Microsystems, Radiation Effects and High Energy Density Science. These diverse research areas enable a multidisciplinary approach to resolve emerging national security problems.


Supratik Guha is senior advisor to the Physical Sciences and Engineering directorate, leading Argonne’s microelectronics and quantum information science strategic efforts. He is also a professor at the Pritzker School of Molecular Engineering at the University of Chicago.
Dr. Guha led the Center for Nanoscale Materials, a U.S. Department of Energy Office of Science user facility, from 2015 to 2019. Before joining Argonne and the University of Chicago in 2015, he spent twenty years at IBM Research where he last served as the Director of Physical Sciences. At IBM, Dr. Guha pioneered the materials research that led to IBM’s high dielectric constant metal gate transistor, one of the most significant developments in silicon microelectronics technology. He was also responsible for initiating or significantly expanding IBM’s R&D programs in silicon photonics, quantum computing, sensor based cyberphysical systems and photovoltaics.
Dr. Guha is a member of the National Academy of Engineering and a Fellow of the Materials Research Society, American Physical Society, a 2018 Department of Defense Vannevar Bush Faculty Fellow, and the recipient of the 2015 Prize for Industrial Applications of Physics. He received his Ph.D. in materials science in 1991 from the University of Southern California, and a B.Tech in 1985 from the Indian Institute of Technology, Kharagpur. At the University of Chicago and Argonne, his interests are focused on discovery science in the area of nano-scale materials and epitaxy for energy, sensing and future information processing.

.jpg)