Lab Partnering Service Discovery
Use the LPS faceted search filters, or search by keywords, to narrow your results.

Seth B. Darling is the Director of the Center for Molecular Engineering and a Senior Scientist in the Chemical Sciences & Engineering Division at Argonne National Laboratory. He also serves as the Director of the Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center. He received his PhD in physical chemistry from the University of Chicago. His group’s research centers around molecular engineering with a current emphasis on advanced materials for cleaning water, having made previous contributions in fields ranging from self-assembly to advanced lithography to solar energy. He has published over 125 scientific articles, holds a dozen patents, is a co-author of popular books on water and on debunking climate skeptic myths, and lectures widely on topics related to energy, water, and climate.
With colleagues at Argonne, Seth invented a new materials synthesis technique called sequential infiltration synthesis, which has found applications in areas ranging from nanolithography to optical coatings to advanced sorbents and membranes. He led the team that received the Project Excellence Award from Argonne’s Energy & Global Sciences Directorate for its work on the Oleo Sponge, which has garnered extensive media and industry attention and won multiple R&D100 Awards.

Santanu Chaudhuri is the Director of Manufacturing Science and Engineering, Argonne’s program that develops capabilities to use high-performance computing-based mesoscale simulation tools to accelerate the development and adoption of new materials for manufacturing.
Dr. Chaudhuri earned his Ph.D. in Materials Chemistry and Chemical Physics from SUNY Stony Brook in 2003. As a graduate student, he received a NATO scholarship to work at Oxford University developing simulation methods for ionic conductors, catalysts, and battery materials. From 2003–2006, Chaudhuri worked at Brookhaven National Laboratory’s Center for Functional Nanomaterials on theory-guided design of hydrogen storage materials for automobile applications. Subsequently, he joined Washington State University, where he led the development of Applied Sciences efforts and served as an Associate Professor in the Department of Physics and Astronomy. In 2014, Chaudhuri moved to the University of Illinois at Urbana-Champaign and established the Accelerated Materials Research program as part of the Applied Research Institute.
Prior to joining Argonne, Dr. Chaudhuri served as the Associate Director of the Applied Research Institute (ARI) at the University of Illinois at Urbana-Champaign (UIUC), responsible for engineering design and simulations. His research group worked on applications of high-performance computing in energy, environment and manufacturing applications for improving efficiency of materials insertion and deployment. He maintains a joint appointment as a Professor in the Civil and Materials Engineering Department at the University of Illinois at Chicago.