Grant is the program manager for cybersecurity research in the Division of Chemical and Biological Sciences (DCBS) at Ames Laboratory. His focus has been on developing software for integrations with cyber defensive tools for the automated cyber threat information sharing program, the Cyber Fed Model (CFM), at Argonne National Laboratory. Additionally, he has provided expertise in research projects developing correlation of publicly exposed devices with vulnerabilities and machine learning for intrusion detection of grid systems. Prior to joining Ames Laboratory, he was in the Aerospace industry in various product development and management roles with formerly United Technologies Aerospace Systems. This included supporting development of cybersecurity policy and secure development life cycles for safety critical systems as well as secure design and assessment of real-time systems bridging security domains on various aircraft network busses. He received an M.S. in technology management from the University of St. Thomas and B.S. in computer engineering from Iowa State University.
He is a computer scientist in the Global Security Sciences Division at Argonne National Laboratory working on a variety of Modeling and Simulation (M&S) projects. He is an integral part of the Analysis of Mobility Platforms (AMP) logistics modeling project for U.S. Transportation Command. He has also been the lead investigator on a program for the Naval Research Laboratory doing Electronic Warfare (EW) M&S, which includes both EW system modeling as well as detailed Radio Frequency (RF) propagation modeling in complex environments. Among his research interests is the development of remotely distributed deep-learning image recognition systems for Unmanned Aerial Systems (UAS) detection. He participated in numerous government and military test and evaluation events for UAS mitigation systems and did analysis on UAS threats to critical infrastructure and methods for protection. He graduated from Carnegie Mellon University with a degree in computer science and robotics and is currently pursuing a master's in analytics at the University of Chicago with an emphasis on advanced computational models, including computer vision and machine learning algorithms.
She is a Staff Scientist and the Deputy of Research Programs for the Building Technology and Urban Systems Division at the Lawrence Berkeley National Laboratory. Her research focuses on commercial building energy performance monitoring, analytics, diagnostics, and intelligent lighting controls. She holds a PhD in Mechanical Engineering from UC Berkeley, and an AB in Mechanical Engineering from Harvard University. She is the recipient of the 2015 Clean Energy Education and Empowerment (C3E) Award for Leadership in Research.
He is a materials engineer and laboratory fellow at Idaho National Laboratory. He holds a doctorate in metallurgical engineering from Michigan Technological University. He serves as the technical lead for the Next Generation Nuclear Plant High Temperature Alloys Research and Development Program and on the management board as the Metals Working Group chair for the Gen IV International Forum Very High Temperature Reactor Materials Program and on the strategic planning board for Nuclear Energy Enabling Technologies Materials Integration. His specialties include the research and development of alloys for use in high-temperature reactors. He recently was the principal investigator and technical lead on Next Generation Nuclear Plant High Temperature Metals Research and Development for the U.S. Department of Energy. He is the author of 65 peer-reviewed articles and 35 conference proceedings, and holds seven U.S. patents.
He is a lead risk analysis engineer at Idaho National Laboratory (INL) and the primary or key investigator in multiple Nuclear Regulatory Commission (NRC) and the U.S. Department of Energy (DOE) probabilistic risk assessment (PRA) projects, including common cause failure analysis, simulation-based dynamic external flood analysis, nuclear operating experience data analysis, SPAR integrated capability model, SPAR model maintenance, and DOE Risk Informed Safety Margin Characterization projects. Prior to joining INL, he worked at Ameren Callaway Nuclear Plant as a PRA engineer and Beijing Institute of Nuclear Engineering as a nuclear system and design engineer. He obtained his bachelor’s degree in nuclear reactor engineering from Xi’an Jiaotong University in China and his master’s and doctorate degrees in nuclear engineering from the University of Missouri-Columbia. He serves on the ASME/ANS Jointed Standard Committee on Nuclear Risk Management Subcommittee on Standard Development, the ANS Professional Engineering Examination Committee, and the ANS Nuclear Installation Safety Division Executive Committee.
He received a doctorate in computer science at the University of Tennessee in 2009, master’s in computer systems and software design, and his bachelor’s with a double major in computer science and mathematics with physics from Jacksonville State University. His research spans government-scale database and management systems, graphical user interface design, medical software used for surgery, gesture recognition, graph-theoretic analysis, optimization, automation, systems genetic research, magnetic resonance imaging, image processing, artificial intelligence, supercomputing, and energy-efficient buildings. He currently serves at Oak Ridge National Laboratory’s Building Technologies Research & Integration Center (BTRIC) as a subprogram manager for software tools and models with oversight of projects, involving websites, web services, databases, simulation engine development, visual analytics, supercomputing, and artificial intelligence. He has lead creation of the world’s most accurate method for calibrating a simulation model to measured data, fastest building model creator, fastest buildings simulator, and largest archive of simulated building data. He is a joint faculty member at the University of Tennessee’s Electrical Engineering and Computer Science Department, and an active member of American Society of Heating, Refrigerating and Air-Conditioning Engineers and Institute of Electrical and Electronics Engineers.
He is the lead for Cyber Operations, Analysis, and Research in Argonne National Laboratory’s Global Security Sciences Division. He is considered a key asset by the U.S. Department of Homeland Security (DHS) for the development of a cybersecurity vulnerability assessment for field use, analysis of cyber-security consequence and threat studies, and leading the pilot cyber-physical regional assessment. Prior to joining Argonne, he managed cyber-security and cyber defense activities at several private-sector companies and involved in the development of a patented operational instance of moving target defense (MTD). He worked in a variety of other cybersecurity research areas, including transportation, satellite communications, social engineering, and offensive cybersecurity. He taught computer networking and cyber-security issues to students in Senegal, Africa through the African Institute for Mathematical Sciences (AIMS) Next Einstein Initiative, a collaboration with the University of Chicago, Argonne, and other institutions.
He is a research scientist specializing in crosscutting applications and advancement of sensor research to enable resilient real-time measurement and control of process variables within the nuclear and other critical industries. His research expertise includes applications of pattern recognition and machine learning techniques, instrumentation and controls, data analytics, battery modeling, risk and reliability, digital signal processing, acoustic telemetry, diagnosis/prognosis using wavelets and empirical mode decomposition, time series analysis, power management, wireless communication protocols, and wireless sensor networks. He has authored 51 peer-reviewed publications and one book chapter, and two U.S. patent applications filed. To date, he was involved in 13 research projects and has been the principal investigator for eight. He serves as a reviewer for the Institute of Electrical and Electronics Engineers (IEEE) Transactions on Image Processing, Energy Conversion, Industrial Informatics, Industrial Applications, Power Delivery, Systems, Machine and Cybernetics, Instrumentation and Measurement, and the American Nuclear Society (ANS) Transactions on Nuclear Technology. He serves as an external reviewer for U.S. Department of Energy’s Office of Science and Office of Nuclear Energy. Since 2009, he has been section editor for the Journal of Pattern Recognition Research. Since 2015, he has served as an elected member of the ANS Human Factors, Instrumentation, and Controls Division and the American Society of Mechanical Engineers Nondestructive Prognostics and Diagnostic Division since 2016.
Dr. Wendy Kuhne is a Fellow Scientist at Savannah River National Laboratory. She has a M.S. in Wildlife Science and a Ph.D. in Radiological Health Sciences specializing in Radioecology. She completed post-doctoral studies at the Medical College of Georgia in the Institute of Molecular Medicine and Genetics under a National Research Service Award, by the National Institutes of Health. She has more than 10 years of experience in the areas of radioecology and radiation biology. Her research focuses on the transport and movement of radionuclides through the environment and uptake into human and non-human biota (plants, trees, and wildlife). She has experience in measuring biological responses to exposure to ionizing radiation including DNA damage endpoints, DNA repair processes, and genomic and proteomic level responses. Her work has involved chronic low dose exposures and acute exposure from low-LET gamma rays and high-LET alpha, protons, and secondary neutrons associated with space travel. Dr. Kuhne is a member of the International Union of Radioecology and she is the Past-President of the Environmental and Radon Section of the Health Physics Society.
Her expertise includes photovoltaic (PV) system performance evaluation and module reliability analysis risk analysis, photovoltaic performance and degradation, energy efficiency, technical supervision of the installation of utility-scale PV research plants, and supervision of the activities for a new PV module testing laboratory. She has developed a probabilistic risk analysis study to assess technical, occupational, and environmental risks for the manufacturing process of crystalline silicon PV cells. Her current research focuses on understanding the mechanisms of failures of PV modules with the support of the X-ray material analysis capabilities offered by the National Synchrotron Light Source. Her expertise in PV started in 2003 working with the Joint Research Centre of the European Commission in close contact with technical analysis and the normative context of PV module qualification. She has a master’s degree in electric engineering from the Polytechnic University of Milan, Italy, and doctorate in energy risk and safety from Delft University of Technology in the Netherlands.
He has more than 10 years of industrial and research experience in automation, instrumentation, and control. He holds a doctorate in nuclear engineering from Texas A&M University, a master’s degree in information technology and automation systems from Esslingen University of Applied Science in Germany, and a bachelor’s degree in mechanical engineering from Jordan University of Science and Technology in Jordan. In 2015, he joined Idaho National Laboratory as a research and development scientist with special focus on nuclear automation, instrumentation, and control. Before earning his doctorate, he worked at Asea Brown Boveri for 6 years and was a lead distributed control systems engineer by 2010. While pursuing his degree, he researched various nuclear engineering topics at Texas A&M University and worked for a year at the International Atomic Energy Agency (IAEA). He also worked for Daimler Chrysler-Mercedes Group and Fraunhofer Institute for Production and Automation in Germany. He is a senior Institute of Electrical and Electronics Engineers (IEEE) member and author of several publications and technical reports. He is also a reviewer of nuclear energy and IEEE journals and U.S. Department of Energy grants.
Fill out the information below to ask your energy technology question. Our target response time is 14 business days; however, any individual may not be available to meet this target though we strive to provide a timely response.