He is a researcher at Idaho National Laboratory working on risk-informed methods development, RELAP5-3D code assessments, and safety analysis of advanced reactor designs. He specializes in nuclear systems safety analyses using advanced best estimate plus uncertainty (BEPU) methods, and his areas of expertise include neutronics, thermal-hydraulics, and coupled codes technology. He earned his master’s and doctorate degrees in nuclear engineering at the University of Pisa, Italy, where he also worked as a research assistant and applied BEPU methods to nuclear power plants in operation and under construction. He was also a researcher at ENEA “Casaccia” Research Center in Rome, Italy, where he applied advanced safety analysis methods to Generation IV designs (SFR). From 2004 to 2015, he was involved in several OECD/NEA and IAEA international research projects on multi-physics and code assessment. He is also a member of the American Nuclear Society and is an Italian professional engineer.
He is a staff research scientist working in the Nuclear System Design and Analysis Division at Idaho National Laboratory (INL). He has expertise in heat transfer, fluid mechanics, thermal design, thermodynamics and nuclear safety analyses. Over the last few years, he has been researching high temperature heat exchanger design and optimization, system integration and power conversion systems, and safety and reliability for Advanced Reactor Concepts, and also has extensive experience in the design and construction of large-scale experimental systems for nuclear and thermal-hydraulic research. He has more than 12 years of research and development experience in nuclear/thermal engineering and has been involved in several academic, industrial, and cross-discipline national laboratory research projects. He is currently working to develop a new multi-loop, multi-fluid advanced test facility designed to examine thermal hydraulic and materials issues associated with advanced nuclear reactor technologies. He has authored two books; contributed chapters to technical books on advanced reactors, thermal systems and process heat transfer; published over 100 peer-reviewed publications; and served as the INL lead for numerous partnerships. He holds an adjunct faculty appointment in the Department of Mechanical, Aerospace, and Nuclear Engineering at Rensselaer Polytechnic Institute. He obtained his bachelor’s in mechanical engineering with concentration in robotics and controls from Wilkes University in Pennsylvania, a master’s degree in nuclear engineering with a minor in mechanical engineering from Oregon State University, a master’s degree in engineering management from University of Idaho, and doctorate in nuclear engineering from University of Idaho.
With 23 years of experience in engineering design, safety, and analysis of nuclear and energy systems, he has served as a principal member of the technical staff at Sandia National Laboratories since 1995, as well as a research associate professor at the University of New Mexico since 2012. His key areas of expertise include computational fluid dynamics, turbulence, dimpling, swirl, advanced manufacturing, and heat transfer. He is experienced with gas, water, molten salt, and heavy-water cooled reactors, including large, small, and miniature reactors. His primary technical achievements include right-sized dimpling, the LIKE algorithm, design of advanced fire sprinklers, isotropic turbulence decay model, development of five new vortices, a vortex unification theory, dynamic swirl modeling, and central recirculation zone modulation. He earned a doctorate in nuclear engineering from the University of New Mexico, as well as a doctorate in philosophy and apologetics from Trinity Seminary and College. He earned two master’s degrees in applied mathematics from the University of New Mexico and mechanical engineering from the University of Idaho, and a bachelor’s in nuclear engineering from the University of California - Santa Barbara. He is currently writing an engineering book for the Springer Publishing Company entitled, “Applied Computational Fluid Dynamics and Turbulence Modeling.”
Fill out the information below to ask your energy technology question. Our target response time is 14 business days; however, any individual may not be available to meet this target though we strive to provide a timely response.