Lab Partnering Service Discovery
Use the LPS faceted search filters, or search by keywords, to narrow your results.

Dr. Sujit Bidhar graduated with his PhD in mechanical engineering from the University of Tokyo in 2012 specializing in fatigue, fracture mechanics, and finite element modelling in aluminium die cast. He is currently working at Fermilab where he is involved in new target material research and development, developing material models for future high energy beam target materials subjected to thermal shock, and nuclear irradiation damage to predict target lifetime. Dr. Bidhar has set up a lab-scale electrospinning unit and successfully fabricated different ceramic, metallic, and polymeric nanofibers; he is currently designing micromechanical experiments to evaluate single nanofiber mechanical properties using SEM, FIB, and AFM techniques. In the past, he has worked at the University of Tokyo as a researcher in the field of impact analysis on jet engine turbine blade made up of FRP composites, large scale finite element simulation on super computers using LS-DYNA. He has research interest and experience in computational mechanics, solid mechanics, structural analysis, fatigue and fracture, stress analysis, very large scale finite element simulations, image Based Finite Element Method using ANSYS,VOXELCON,LS-DYNA,ABAQUS, FrontISTR,HYPERMESH, MATLAB, Fatigue testing, X-ray CT. He also has experience in conducting experiments at high temperature and pressure environment, various metallurgical laboratory works, SEM micrographs, EDX, RAMAN spectroscopy, Slow strain rate tests.

Martin Suchara is a computational scientist at Argonne National Laboratory with expertise in quantum computing. His research focuses on quantum communication and networking, quantum error correction, quantum simulations, and optimizations of the quantum computing software stack.
Prior to joining Argonne, Martin worked at AT&T Labs and received postdoctoral training in quantum computing from UC Berkeley and the IBM T. J. Watson Research Center. Martin received his Ph.D. from the Department of Computer Science at Princeton University.

Dr. Mark Bryden is the founding director of the Simulation, Modeling and Decision Science program at Ames Laboratory and is a professor of mechanical engineering at Iowa State University. Dr. Bryden’s research is focused on the federation of information from disparate sources (e.g., models, data, and other information elements) to create detailed models of engineered, human, and natural systems that enable engineering decision making for these complex systems. Dr. Bryden has published more than 180 peer-reviewed articles and co-authored the textbook Combustion Engineering. He has founded two successful startups based on his research work, and he has founded the nonprofit ETHOS, a community of 150+ researchers focused on meeting the needs for clean village energy in the developing world. He has received three patents, three R&D 100 awards, two Regional Excellence in Technology Transfer awards, and a National Excellence in Technology Transfer award. In 2013 he and his coauthors received the ASME Melville Medal. His professional experience includes three years as an engineer and 11 years as a manager at Westinghouse Electric in Idaho Falls, Idaho, and Pittsburgh, Pennsylvania. In addition, for more than 15 years Professor Bryden has worked on energy systems for the poor in a number of developing countries.

.jpg)
John W. Freiderich is an applied technology scientist at the Y-12 National Security Complex. He specializes in the advanced processing of non-radiological and nuclear materials. His scientific areas of expertise include electrochemistry, ionic liquids/molten salts, aqueous solution chemistry, and various spectroscopic methods. Freiderich has developed and patented technologies related to the improvement of consumer-relevant materials and processes during his tenure. These technologies include rare earth extractive metallurgy, mineral electrowinning, high-throughput molten salt reactor material production, advanced sensor development, and electroplating methods. He holds a Ph.D. in radiochemistry from Washington State University and a B.S. in chemistry from Minnesota State University.


Title: HPC Application Architect
Expertise:
- Docking
- Molecular dynamics
- Density Functional Theory Code Development
- Parallel programming (GNU parallel, MPI, OpenMP, PGAS models, etc.)
Hubertus (Huub) van Dam is a computational chemist with expertise in docking and molecular dynamics simulations. In prior work he has collaborated on improving the accuracy of docking calculations by using ab-initio molecular potentials for the electrostatic part of docking scores (DOI: 10.1063/1.2793399). He is currently supporting the National Virtual Biotechnology Laboratory (NVBL) effort to find COVID-19 drug candidates using Autodock 4.2, Dock 6 and DeepDriveMD. He also has extensive expertise in writing and supporting large parallel quantum chemistry packages. Currently, he serves as Testing and Assessment Task Lead on the Exascale Computing Project’s NWChemEx effort. NWChemEx is providing a community infrastructure for computational chemistry that takes full advantage of exascale computing technologies.

Biography
Charles Macal applies computational modeling and simulation tools to complex systems to solve problems in a variety of fields, including energy and national security.
He is the chief scientist for the Argonne Resilient Infrastructure Initiative, and is a principal investigator for the development of the widely used Repast agent-based modeling toolkit.
He has Appointments at the University of Chicago Computation Institute and the Northwestern-Argonne Institute for Science and Engineering. He is adjunct professor at the University of Chicago, where he teaches a course on Complex Adaptive Systems for Threat Management and Emergency Preparedness.
He is a registered professional engineer in the State of Illinois and holds software copyrights for two systems: ELIST (Enhanced Logistics Intra-theater Support Tool) and EMCAS (Electricity Market Complex Adaptive System).
Education
- B.S. Purdue University, 1974
- M.S., Purdue University, 1975
- Ph.D., Northwestern University, 1989
Awards, Honors and Memberships
- Association for Computing Machinery, Transactions on Modeling and Computer Simulation, Area Editor for Agent-based Modeling
- Society for Computer Simulation International, Simulation Journal, Associate Editor


My current research focuses on engineering spin systems in diamond, silicon carbide, and other wide bandgap semiconductors for quantum information, nanoscale sensing, and quantum communication applications. These spin systems, such as the nitrogen vacancy (NV) center in diamond and the divacancy complexes (VV) in silicon carbide (SiC), offer a wide variation of control techniques as well as sensitivity to local magnetic and electric fields and temperature.
.png)

He received his bachelor’s degree in physics and his master’s and doctorate degrees in electrical engineering from the University of Washington. His main areas of research are distribution system analysis and power system operations. He is currently a principal research engineer at the Pacific Northwest National Laboratory for PNNL’s resilient distribution and microgrid analysis team (part of the Lab’s Electricity Infrastructure team)r. He is an adjunct faculty member at Washington State University, an affiliate assistant professor at the University of Washington, and a licensed professional engineer in Washington. He is the past chair of the Distribution System Analysis Sub-Committee and the current secretary of the Analytics Methods for Power Systems Committee (AMPS); formerly known as the Power System Analysis, Computing, and Economics (PSACE) Committee.