Lab Partnering Service Discovery
Use the LPS faceted search filters, or search by keywords, to narrow your results.

Dr. Sujit Bidhar graduated with his PhD in mechanical engineering from the University of Tokyo in 2012 specializing in fatigue, fracture mechanics, and finite element modelling in aluminium die cast. He is currently working at Fermilab where he is involved in new target material research and development, developing material models for future high energy beam target materials subjected to thermal shock, and nuclear irradiation damage to predict target lifetime. Dr. Bidhar has set up a lab-scale electrospinning unit and successfully fabricated different ceramic, metallic, and polymeric nanofibers; he is currently designing micromechanical experiments to evaluate single nanofiber mechanical properties using SEM, FIB, and AFM techniques. In the past, he has worked at the University of Tokyo as a researcher in the field of impact analysis on jet engine turbine blade made up of FRP composites, large scale finite element simulation on super computers using LS-DYNA. He has research interest and experience in computational mechanics, solid mechanics, structural analysis, fatigue and fracture, stress analysis, very large scale finite element simulations, image Based Finite Element Method using ANSYS,VOXELCON,LS-DYNA,ABAQUS, FrontISTR,HYPERMESH, MATLAB, Fatigue testing, X-ray CT. He also has experience in conducting experiments at high temperature and pressure environment, various metallurgical laboratory works, SEM micrographs, EDX, RAMAN spectroscopy, Slow strain rate tests.

Dr. Mark Bryden is the founding director of the Simulation, Modeling and Decision Science program at Ames Laboratory and is a professor of mechanical engineering at Iowa State University. Dr. Bryden’s research is focused on the federation of information from disparate sources (e.g., models, data, and other information elements) to create detailed models of engineered, human, and natural systems that enable engineering decision making for these complex systems. Dr. Bryden has published more than 180 peer-reviewed articles and co-authored the textbook Combustion Engineering. He has founded two successful startups based on his research work, and he has founded the nonprofit ETHOS, a community of 150+ researchers focused on meeting the needs for clean village energy in the developing world. He has received three patents, three R&D 100 awards, two Regional Excellence in Technology Transfer awards, and a National Excellence in Technology Transfer award. In 2013 he and his coauthors received the ASME Melville Medal. His professional experience includes three years as an engineer and 11 years as a manager at Westinghouse Electric in Idaho Falls, Idaho, and Pittsburgh, Pennsylvania. In addition, for more than 15 years Professor Bryden has worked on energy systems for the poor in a number of developing countries.
.jpg)
John W. Freiderich is an applied technology scientist at the Y-12 National Security Complex. He specializes in the advanced processing of non-radiological and nuclear materials. His scientific areas of expertise include electrochemistry, ionic liquids/molten salts, aqueous solution chemistry, and various spectroscopic methods. Freiderich has developed and patented technologies related to the improvement of consumer-relevant materials and processes during his tenure. These technologies include rare earth extractive metallurgy, mineral electrowinning, high-throughput molten salt reactor material production, advanced sensor development, and electroplating methods. He holds a Ph.D. in radiochemistry from Washington State University and a B.S. in chemistry from Minnesota State University.

Title: HPC Application Architect
Expertise:
- Docking
- Molecular dynamics
- Density Functional Theory Code Development
- Parallel programming (GNU parallel, MPI, OpenMP, PGAS models, etc.)
Hubertus (Huub) van Dam is a computational chemist with expertise in docking and molecular dynamics simulations. In prior work he has collaborated on improving the accuracy of docking calculations by using ab-initio molecular potentials for the electrostatic part of docking scores (DOI: 10.1063/1.2793399). He is currently supporting the National Virtual Biotechnology Laboratory (NVBL) effort to find COVID-19 drug candidates using Autodock 4.2, Dock 6 and DeepDriveMD. He also has extensive expertise in writing and supporting large parallel quantum chemistry packages. Currently, he serves as Testing and Assessment Task Lead on the Exascale Computing Project’s NWChemEx effort. NWChemEx is providing a community infrastructure for computational chemistry that takes full advantage of exascale computing technologies.

Jayakar “Charles” Tobin Thangaraj is currently the Science and Technology Manager and the Deputy Director at the Illinois Accelerator Research Center (IARC). He works at the frontiers of accelerator science where bold ideas enable discoveries that transform our fundamental understanding of the universe. He is passionate about partnership between science, technology and startups to enable entrepreneurship and innovation to solve 21st century challenges in environment, medicine and society. He received both his M.S. and PhD from the University of Maryland. Charles joined Fermilab as a People’s Fellow in 2009.
Areas of expertise: Artificial Intelligence for Accelerators; Machine Learning for Accelerators
.png)


Nhan Tran is a Wilson Fellow at Fermilab working on the Compact Muon Solenoid experiment at the Large Hadron Collider and is also developing new dark sector experimental initiatives. He is generally interested in deploying machine learning as a powerful tool across fundamental physics. His recent research focus is on the intersection of machine learning with real-time systems and embedded electronics as well as heterogeneous computing to improve experimental efficiency and sensitivity. He received his PhD from Johns Hopkins University in 2011 and was a postdoctoral researcher at Fermilab prior to joining in his current position.
Areas of expertise: ML Algorithms for Data Reconstruction and Pattern Recognition; Real-Time Low-Latency ML in Resource-Constrained Environments; Heterogeneous Computing

Dr. Iadecolais a theoretical physicist using diverse analytical and numerical tools to study a variety of topics in quantum condensed matter. A graduate of Brown University (Sc.B., 2012), he received his Ph.D. in Physics from Boston University in 2017. He then became a JQI Theoretical Postdoctoral Fellow at the NIST-University of Maryland Joint Quantum Institute until 2019, when he joined Iowa State University as an Assistant Professor. Research in his group focuses on out-of-equilibrium quantum systems and topological phases with a view towards emerging quantum technologies. On the nonequilibrium side, he studies properties of highly-excited many-body states and the surprising phenomena they harbor that challenge deeply ingrained intuition based on quantum statistical mechanics. On the topological side, he focuses on states of matter whose properties cannot be understood within the traditional paradigm of spontaneous symmetry breaking, and which could enable the robust storage and manipulation of quantum information. In addition to thinking about new phenomena, he grapples with ways to realize them in electronic and photonic systems, or using near-term quantum platforms.
.jpg)
Professor of Chemistry, received his B.S. in 1997 from Pennsylvania State University, where he worked in the group of Prof. Ayusman Sen on palladium-catalyzed co- and terpolymerizations. He earned his Ph.D. from the University of California, Berkeley in 2003 under the guidance of Prof. T. Don Tilley, primarily focused on the development of new catalytic C–H bond functionalizations. Following postdoctoral work at the Swiss Federal Institute of Technology (ETH Zürich) with Antonio Togni investigating catalytic asymmetric hydroamination and hydrophosphination, Aaron joined the chemistry faculty at Iowa State University in 2005. He was promoted to associate professor in 2011, and to professor in 2016.