Lab Partnering Service Discovery
Use the LPS faceted search filters, or search by keywords, to narrow your results.



Dr. Yao is a theoretical and computational physicist, developing methods, algorithms, and codes to address condensed matter physics and materials science problems. With a degree of B.S. in department of intensive instruction in 2000 and M.S. in physics in 2003 from Nanjing University, China, he obtained his Ph.D. in physics from Iowa State University in 2009. After graduation, he took a postdoc position in Ames Laboratory. He was promoted to assistant scientist in 2011, associate scientist in 2015, and senior theoretical physicist in 2019, with an adjunct faculty position in department of Physics and Astronomy at Iowa State University. He is currently leading projects in the development of quantum computing approaches to solve ground state and dynamical properties of correlated quantum materials within the Gutzwiller quantum-classical embedding framework. He is also a key developer of the Gutzwiller density functional theory and rotationally-invariant Slave-Boson method and software.
.jpg)



Dr. Washington currently serves on multiple committees both at SRNL and in the Aiken community. These include the Conduct of R&D safety council, Diversity Board of Directors for SRNS, and the former Board of Directors Chairman and current member for Habitat for Humanity. He is an also an Adjunct Professor at USC Aiken in the chemistry department.



He is the facility director for Nanofabrication at the Molecular Foundry, a DOE national user facility for nanomaterials fabrication and research located at Berkeley Lab. He applies his experience in nanophotonics and plasmonics fabrication and characterization to the development of new lithographic tools and processes. He collaborates with industry partners and fellow researchers to advance nanofabrication, thin film deposition, and electron beam lithography technologies, among others.
Areas of expertise: nanoscience, new materials, quantum, electronics/semiconductors, micro-nano-fabrication, nanodevices

